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Abstract:
The digital twins have been emerging as an important solution for industrial processes for
providing simulation models capable of imitating the physical system. However, there is not
yet an unanimous approach for creating digital twins, considering the difficulties of using an
accurate technique that have a rapid update to the new outputs caused by changes in the
system as equipament efficiency, for example. In this sense, this work compares 3 machine
learning techniques to modeling a water supply network (specifically, predict the flow in a
point of the network), specifically a classic Artificial Neural Network and CatBoost, against
the proposed algorithm, the KNN (K-Nearest Neighbors) which have incremental learning. Due
the incremental learning approach it can be shown that KNN have superior performance than
CatBoost and ANN (these techniques have transfer learning and need retraining, respectively),
having better performance in both the first phase (training) and the last (the incremental
learning), showing its potential for application in digital twins.
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continual learning; flow estimation.

1. INTRODUCTION

The digital twins has emerged as a great tool for opti-
mization of industrial processes, through digital replication
of the corresponding physical entity. This concept was
developed first by NASA during the Apollo 13 mission
in 1970 and came out after in 2010 in the final release of
the NASA modeling, Simulation, Information Technology
& Processing Roadmap (Shafto et al. (2010)). Since then,
there were many attempts to establish an well defined con-
ceptualization of the digital twins (Jones et al. (2020)), but
in general, the concept should include three components
Grieves (2014):

• A physical product
• A virtual representation of that product (included the
modeling, testing, optimisation, etc of the physical
process)

• The bi-directional data connections feeding data from
the physical to the virtual representation and con-
versely information and processes from the virtual
representation to the physical.

In these context, it is particularly important that the
digital twin is a faithful copy of the physical counterpart,
so that the systems modifications through the time in the
physical twin be absorbed by the digital representation.

On the other hand, it is important to improve the con-
ditions of water supply throughout the world, mainly
because of high waste rates involved in the use of this
essential and finite resource. The world is far away from

the goals established in the 2015 United Nations Summit.
According to the Sistema Nacional de Informações sobre
Sanemento (SNIS), the waste rate of distribution in Brazil
is around 40% SNIS (2022). This means for each 100 liters
of water, 40 liters are lost due to leakings. This is an
alarming rate and justifies the search for solutions.

A difficult of this kind of system is the pressure regulation
in the network, since the demand varies throughout the
day Anele et al. (2018). During high demand periods,
the systems may work fine; however in the low demand
periods, the lack of an adequate control leads to overpres-
surization in the network. When much more water is fed
into the network than is consumed, burst pipe rupture may
occur and therefore waste of water Jara-Arriagada and
Stoianov (2024). In addition to that, pipe breaks causes are
not fully understood Jara-Arriagada and Stoianov (2021).
One possible way of solving this problem is make a pressure
control through frequency inverters and pressure regulat-
ing valves. Moreover, it is fundamental to have knowledge
of network behavior in different consumption situations in
order to evaluate the optimized operating scenario. There-
fore, modeling the distribution network, whether through
mathematical equations or using artificial intelligence, is
essential.

In this sense, this work aims to present a performance
comparison of different machine learning techniques to
enable the development of digital twin of an hydraulic
network. Each approach has its own methods of model
updating and intelligence building, so that its prediction
accuracy and learning strategy can be evaluated.



1.1 State of Art

In specialized literature, some approaches for modeling
systems for developing digital twins are presented. For
some approaches, modeling through physical equations is
preferable as in Zhou et al. (2022) and Zeng et al. (2023),
in which the software Modelica was used for modeling
thermoelectric systems. This software has packages for
electric, thermal and mechanical modeling, etc. The main
advantage of this method was the development of a tool
for operation and failures simulation. Nonetheless, these
works did not present a method for updating the model
if it began to deviate from the behaviour of the physical
system.

In this sense, modeling approaches based on machine learn-
ing techniques stand out because they are more flexible
to be updating, not depending of physical equations to
correct the deviations of its predictions from the real
system. For example, in the work of Huang et al. (2022)
a Combined Cooling, Heating, and Power-Cold Energy
Recovery system was modeled, which included a series of
turbines and heat exchangers, which would be very difficult
to accomplish through mathematical modeling. So they
chose to model the system using a Cascade-Forward Neural
Network that had only 4 inputs and 3 outputs, simplifying
plant modeling. Also in this work, they managed to simu-
late optimal operation situations through an optimization
algorithm for each season of the year.

In some other digital twin solutions, ANNs have also
been used in the context of combining the attributes
of machine learning models with physical equations. In
these approaches, when possible, equations representing
the physical process to be modeled are used to improve the
ANN’s estimate, as was done in Sun and Shi (2022) and
Yang et al. (2024). However, as is obvious, this approach
requires advanced knowledge of the process.

But one of the approaches that meets the concept of
continuous learning of digital twins and is present in a
Python implementation is the River package Montiel et al.
(2021a). This module is specialized in algorithms based
in incremental learning, which has implementations of
algorithms of different types, such as dicision trees, linear
regressions and KNN (K-Nearest Neighbors). KNN is a
excelent technique for modeling systems, as it is entirely
based on data storage, which in the River’s implementation
has a FIFO (First in, First out) structure, erasing older
data of the memory.

On the other hand, another machine learning technique
that has gained notoriety is the CatBoost, an algorithm
based on Gradient Boostings Prokhorenkova et al. (2018).
This family of algorithm has been applied in many com-
petitive machine learning problems, as it can be find out
in the Kaggle platform. In this context, two approaches
that will be compared for the digital twins updating arise:
through online learning and through transfer learning.

In the online learning, the learning process is continuous:
the learning-model update its parameters from continuous
data entry, that is, adjust its intern parameters one at a
time Hoi et al. (2018). In this context, the online learning
can be mede as presented in the Figure 1. In this case,
as suggestion of learning metric, the online learning model

can adjust its own parameters only when the relative error
is higher than a defined target accuracy.
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Figure 1. Online machine learning code diagram.

On the other hand, approaches based in transfer learning
have a characteristic of having two learning stages: In the
first (the preparation stage), the data are divided into two
parts (train and test) which are used for training and
model calibration so that it become the most accurate
possible relating to the output values; after that the
machine learning model begin the operation phase in real-
time, which naturally as the time goes start to became
inacurate due to context changing Weiss et al. (2016). This
way, the model is retrained again using new data which was
not used in the first training because they was collected
during the operating time. An ilustration of this aproach
of model updating is shown in the Figure 2.
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Figure 2. Transfer learning code diagram.

In this case, one way to achieve better quality in the
model updating is to keep fixed some of the parameters
callibrated in the first stage and update only a small part
of them, as validated in Kumar et al. (2022). For example,



if the model is an artificial neural network, the weights
can be callibrated in the first stage and in the seccond
stage change only the weights of the last layer, as a way to
retain knowledge gained in the hidden layers. This way, the
knowledge of the model remains and only a small adjust
is done to make predictions closer to the actual scenario.
An ilustration of this example is shown in the Figure 3.
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Figure 3. Example of how to do transfer learning.

Each of these two approaches have its own advantages
and disvantages which should be analysed according to
the process to model. Some of the main problems in the
model update are:

• Drifting: Occur when models reduce its performance
due to process changes through the time, losing pre-
cision in the predictions. This is a fundamental issue
for digital twins;

• Catastrophic forgetting: Occur when the model after
several updates overfit the new data learned and
forgets the previous knowledge. This way, it can forget
how to generalize the problem, becoming worst than
the before the update.

• Updating time: Depending on the process it is vital
the model to be available for desicion making. So, the
time to update the model should be short enough to
not hinder decision making.

Given the widespread use of neural networks for digital
twin applications, the notoriety achieved by the CatBoost
algorithm in machine learning problems in general and the
incremental learning approach that KNN can offer, these
three techniques were chosen for study in this work.

2. METHODOLOGY

Multi-Layer perceptron networks are a type of Artificial
Neural Network, which are computational models of inter-
connected neurons that through mathematical operations
seems to imitate human brain behavior such as pattern
recognition and learning Bao et al. (2024). CatBoost, in
turn, is a form of the gradient-boosting decision tree with
enhanced capabilities, able to deal with nonlinear data
Chelgani et al. (2024). K-nearest neighbors is an algorithm
that classifies one element based on the categories of it’s
N nearest neighbors Zhu et al. (2024).

In order to compare different machine learning techniques
applied to develop a digital twin and discuss the ad-
vantages and disvantages of each one, we choose three
techniques to focus on: a Multi-Layer perceptron network
in which only the last hidden layer will be updated, Cat-
Boost with retraining and KNN with online learning as
implemented by Montiel et al. (2021b).

In order to deal with this issue, each technique - ANN,
CatBoost and KNN - has its own approach:

• ANN: it does the retraining using batches of data,
having no support for incremental learning;

• CatBoost: create new trees to complete the previous
learning;

• KNN: the KNN learning process is to store new data
through memorization via queue.

2.1 Case study: setting the environment

To validate the modeling techniques proposed for develop-
ing a digital twin, it was considered an hydraulic network
of the Laboratório de Eficiência Energética e Hidráulica
em Saneamento (LENHS), UFPB, Brazil. This network
has frequency converter-controlled feed pumps, pressure
control valves and flow sensors and pressure sensors dis-
tributed throughout the pipeline. These hydraulic network
is illustrated on Figure 4, in which PT means Pressure
Transducer and FT means Flow Transducer.

Figure 4. Illustration of the case study hydraulic network.

According to what is shown in the Figure 4, the LENHS’s
hydraulic network has a series of derivations in which the
water can flow, and which could be studied. However, since
our main goal in this work is to validate the modeling
medodology to develop a digital twin, it was chosen to
consider only the initial part of the system (filled in
green color). This is a very important excerpt, because
it includes the pump, which is the main process control
element, so that the use of a digital twin in this system
could be applied to monitor the changes caused by time,
for example, when comparing different results of pressure
and flow outcomes for the same pumping setpoint due to
roughness increase on the pipeline or pump degradation.
The PT sensor indicated by the arrow represents the
output that the models used as a reference for learning.

2.2 Case study: setting the modeling

Given the excerpt chosed for study, it was chosen the
input and output variables for the digital twin model
considering the criteria: instrument measurement quality
and its influence on output variables. For this study, it was
chosen the flow measured right after the pump injection as
target output, given the importance of knowing the volume
of water injected into a distribution network.



On the other hand, for the inputs it was chosen the well
calibrated instruments, in our case, the Pressure sensor
highlighted in the Figure 4; For the system acting elements
it was chosen the frequency in the frequency converter,
based on tests done on different frequencies, for greater
variability of process behavior. About the valves, it was
chosen to keep them at a fixed value in a first moment and
then vary them in the cycles of increase in the frequecy.
To illustrate this, the operation variation is shown in the
Figure 5.
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Figure 5. Frequency and valve’s angle operation.

Regarding the issue of digital twin modeling, in the Figure
6 it is shown a diagram of inputs and outputs in which the
valve angle was omitted. This was done because the goal
of this work is to emulate network degradation in an water
distribution network using a valve angle change to create a
cargo loss. The impact of this change should be considered
by the model through the relation with the other variables.

Figure 6. Input-output diagram of the modeling.

Regarding the data collection, it was done in a sample time
of 1 second, in a 12-second window, increasing the rotation
speed of the frequency conversor in 5 Hz each 3 minutes,
generating 705 samples (during the acquisition process,
some date was lost). The data was divided in 3 moments,
according to Figure 7. The first moment represents a new
network, in which the model was trained for the first
time. In this first moment, 20 % of the data was used
for validation; the second moment was applied to retrain
the model and improve performance until the end. Finally,
the test period is a period in which retraining based
models (ANN and CatBoost) uses only for testing, while
KNN continues to learn due to its incremental learning
characteristic.
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Figure 7. Division of training and testing data.

To ensure that the comparison between the algorithms
would be fair considering their versions with optimized

hyperparameters, the Bayesian hyperparameterizer was
used, as implemented in Nogueira (2014–), which unlike
approaches such as Random Search and Grid Search, the
Bayesian hyperparameterizer is an optimization algorithm
that performs a directed search based on iterations of
previous parameter combinations.

2.3 Evaluating the models’ performance

To compare the performance of machine learning models
such as digital twins, 3 error metrics were considered: the
Mean Absolute Error (MAE), Mean Squared Error (MSE)
and the Mean Absolute Percentage Error (MAPE). These
3 metrics were chosen due to their characteristics, with
MAE having a simpler interpretation, MSE more sensitive
to outliers and MAPE for a more generic interpretation of
the error. These 3 equations can be seen in Table 1, where
ŷ is the predicted value, y is the actual value and N is the
number of samples.

Table 1. Models’ Performance Metrics.

Metrics MAE MSE MAPE

Equations
1

N

N∑
i=0

|y − ŷ|
1

N

N∑
i=0

(y − ŷ)2
1

N

N∑
i=0

y − ŷ

y

3. RESULTS AND DISCUSSIONS

After searching for the optimal parameters using the
Bayesian hyperparameterizer for each of the proposed
algorithms, the ideal hyperparameters were obtained for
each of the models, i.e. ANN, CatBoost and KNN. Table
2 shows the optimum values for each of them:

Table 2. Model Parameters

ANN CatBoost KNN

- nº hidden lay-
ers: 3

- bagging tempera-
ture: 16.535

- aggregation
method: 1.50

- layer 1: 17 - depth: 9 - nº neighbours: 8
- layer 2: 19 - l2 leaf reg: 3.754 - p: 1.197
- layer 3: 11 - random strength:

7.260

The first analysis to be done is about the model perfor-
mance considering only a static phase, i.e, evaluating only
the performance at the first phase previously separate,
while the valve was 100 % open. In this context, the
graphics of Figures 8, 9 and 10 show the results for each
machine learning model proposed.
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Figure 8. CatBoost’s Performance from the 1st period of
data.
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Figure 9. MLP’s Performance from the 1st period of data.
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Figure 10. KNN’s Performance from the 1st period of data.

In this first evaluation it is visually discernible that Cat-
Boost and KNN had better performance, while ANN had
in some points a perceptible distance from the real value.
In the Table 1 it is compared the performance using
the metrics MAE (Mean Absolute Error), MSE (Mean
Squared Error) and MAPE (Mean Absolute Percentage
Error).

Table 3. Comparing Models by Error Metrics.

Models/Metrics MSE MAE MAPE

MLP 0.18 0.389 7.33%
CatBoost 0.01 0.058 1.09%
KNN 0.004 0.0429 0.8%

In this comparison, the KNN had the best performance,
being more accurate than the other techniques, which
is not so common due to the simplicity of its inferring
method.

This good performance of KNN ocurred too in the second
test phase, in which the fitness of the model for use as a
digital twin was evaluated. In the Figures 11, 12 and 13, it
can be noted that the algorithms based on retraining lose
quality vary fast in spite of the retraining have increased its
repective performance, specially the ANN, while the KNN
due to its incremental training approached the system real
value quickly. However, it is worth observing a negative
point that is the presence of spike-type predicions, to
which the model was sensitive. This can be caused by some
variation in the input data or even the predominance of old
patterns in the memory that influenced with great strength
at the time of prediction.
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Figure 11. CatBoost’s Performance from the all period of
data.
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Figure 12. MLP’s Performance from the all period of data.
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Figure 13. KNN’s Performance from the all period of data.

Evaluating only the test period, in the table 2 it is the
performance comparison of static and dynamic models. In
this table it is clear the performance improvement with
the addition of new data, and at the same time it can be
noted the difference of prediction between techniques. The
numbers of the MAPE metric can be highlighted, because
they had high values. These values can be atributted to
these metric nature, for it has a division and when the
divider tends to zero, the metrics value tends to explode,
as it is in the present case for the flow value approaches
zero.

Table 4. Final comparison between models.

Models/Metrics MSE MAE MAPE

MLP (Static) 4.35 1.434 366.1%
CatBoost (Static) 4.08 1.381 387%
KNN (Static) 5.03 1.503 364.2%

MLP (Retrained) 1.0 0.700 127%
CatBoost (Retrained) 3.46 1.254 379.2%

KNN (Incremental Learning) 0.27 0.231 28.1%

4. CONCLUSION

It this work, 3 different techniques were tested for use
as digital twin, emulating the change in a water supply
network causing loss of cargo through the closing of a valve.
It was shown that the 3 models were capable of learn the
system behaviour while the valve angle was keep fixed, for
the absolute errors were lower than 0.38L/S. Moreover,
KNN had the best performance since the first phase.



When the valve angle was changed, emulating the effect
of the natural cargo loss suffered by a real network, the
models that need retraining increased its performance
but they still fell far short by no longer being retrained
after subsequent changes in the system, while the KNN,
which practice incremental learning, managed to obtain
the best performance in addition to rapid monitoring of
the new dynamic (that is, needing only a few samples),
showing itself as an interesting technique for application
with digital twins.

For future work, we suggest evaluating KNN against
other more complex algorithms, such as more robust ANN
topologies, as well as other techniques with an incremental
learning approach that could outperform KNN.

In addition, the performance of this approach can be
verified for different industry problems in order to validate
its use for a variety of applications.
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