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∗ Universidade Federal do Rio Grande do Norte, RN, (e-mails:
thommas.flores.101@ufrn.edu.br)

∗∗ Escola Superior de Agricultura Luiz de Queiroz, São Paulo-SP,
(e-mails: willians.dutra@prosys.tec.br)
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Abstract: This study aimed to evaluate the performance of various time series forecasting
algorithms for predicting Total Reduced Sulfur (TRS) emissions in the pulp and paper industry.
The analysis was conducted using a real time series dataset, where 25 samples autocorrelation
function was computed to identify the level of correlation among the variables lags. The
results showed that the last four previous TRS values had a total autocorrelation above 0.8.
Additionally, the partial correlation function indicated that only the last previous TRS value
had a correlation value above 0.3. The comparison of the performance of different time series
algorithms, including XGBRegressor, LSTM, CNN, MLP-MHA, MLPRegressor, and ARIAMA,
was made based on two different horizons (1 and 8). The evaluation metrics used were MAE,
MSE, R2-score, and execution time. The results indicated that ARIAMA outperformed the
other algorithms on horizon 1, with an MAE of 0.0565 and R2-score of 0.7046. On the other
hand, LSTM had the best performance on horizon 8, with an MAE of 0.0853 and R2-score
of 0.5241. These findings suggest that advanced time series prediction algorithms can provide
more accurate models for predicting TRS emissions in the pulp and paper industry, contributing
to environmental and health mitigation efforts. Finally, the use of these models can help
the industry comply with regulatory standards and avoid penalties while also supporting its
economic sustainability.
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1. INTRODUCTION

The production of pulp and paper involves various pro-
cesses that consume significant amounts of energy and
chemicals, resulting in the release of various Greenhouse
Gas (GHG) emissions such as sulfur dioxide (SO2), partic-
ulate matter (PM), carbon monoxide (CO), carbon dioxide
(CO2), ozone (O3), nitrogen oxides (NOx), and hydrocar-
bons (HC) from different sources like combustion of fossil
fuels and decomposition of organic matter.

According to a study by dos Santos et al. (2021), the
pulp and paper industry in Brazil was responsible for
4.6% of the country’s total GHG emissions in 2017. The
study also shows that the combustion of fossil fuels for
energy generation is a major contributor to GHG emis-
sions in the industry. However, the Brazilian government
has implemented several regulations to mitigate GHG
emissions from the industry. For instance, the Brazilian
National Climate Change Policy (PNMC) established a
target to reduce GHG emissions from the industry by 5.8

million tonnes of CO2 equivalent by 2020. Additionally,
the Brazilian Forest Code requires the preservation and
restoration of native vegetation, which can help to offset
GHG emissions from the industry.

Several studies have shown that implementing energy-
efficient technologies and using renewable energy sources
can significantly reduce GHG emissions in the pulp and
paper industry. For example, the study by Ferreira et al.
(2019) found that using biomass-based energy sources can
reduce GHG emissions by up to 96% compared to using
fossil fuels. Moreover, the study by Silva et al. (2020)
showed that implementing energy-efficient technologies in
the pulp and paper industry can reduce GHG emissions
by up to 43%.

Additionally, machine learning techniques have been used
to predict and mitigate emissions from pulp mills, as shown
by Jafari et al. (2019), who accurately predicted sulfur
dioxide emissions and identified key influencing variables
using these techniques. By combining these approaches,



the pulp and paper industry can take a multi-faceted
approach to reduce their environmental impact and con-
tribute to sustainability efforts.

In Wen et al. (2021), was used machine learning to model
the impact of operating parameters on greenhouse gas
emissions from pulp and paper mills. Their results showed
that machine learning techniques could help optimize
operating parameters to reduce emissions.

This paper proposes methods to improve the prediction
of Total Reduced Sulfur emissions in the pulp and pa-
per industry using advanced time series forecasting al-
gorithms such as XGBRegressor, ARIMA, LSTM, CNN,
MLP-MHA and MLPRegressor. The study compares the
performance of these models on two different horizons and
evaluates them based on several metrics, including MAE,
MSE, and R2-score.

Considering the contributions of the mentioned work, it
is possible to highlight: 1) Analysis of the influence of
lags values as parameters for estimating future values; 2)
Comparison of the performance of different time series pre-
diction algorithms; and 3) Discussion of the environmental
and economic impact on the paper and pulp industry.

The remainder of this paper is organized as follows: Section
2 provides a comprehensive review of some forecasting
methods, while Section 3 describes the Recovery Boiler
Incinerator. In Section 4, the experimental procedures are
outlined, and Section 5 presents and discusses the results.
Finally, Section 6 concludes the paper.

2. FORECASTING METHODS

Choosing the right model for time series forecasting is
crucial for precise and valuable predictions. Thus, com-
paring diverse models becomes necessary to identify the
best-suited one for a specific problem. In this article, we
compared six methods for time series forecasting. This
evaluation enables us to determine the most appropriate
model for the given problem and optimize the forecasting
outcomes.

2.1 XGBRegressor

XGBRegressor is a decision tree-based algorithm that uses
Gradient Boosting Decision Tree (GBDT) as a machine
learning technique. GBDT is an ensemble technique that
combines multiple weak decision trees to form a stronger
model. Each tree is trained to correct the errors of the
previous trees Friedman (2001).

The XGBRegressor uses a stochastic gradient optimization
method to optimize the loss function in order to improve
model accuracy. It uses L1 and L2 regularization to prevent
overfitting.

The goal of XGBRegressor is to minimize the loss function
through a stochastic gradient optimization method. To do
this, it uses the gradient descent algorithm to adjust the
model parameters.

2.2 ARIMA

The autoregressive integrated moving average (ARIMA)
model is a widely used time series forecasting technique.

The ARIMA model consists of three components: the
autoregressive component (AR), the moving average com-
ponent (MA), and the differentiation component (I).

The AR component is responsible for modeling the serial
dependence of the time series on its past values. The MA
component is used to capture the random fluctuations of
the time series. The I component is used to transform the
time series into a stationary series, which facilitates the
modeling and forecasting of the series.

The ARIMA model can be represented as ARIMA(p, d, q),
where p is the order of the AR component, d is the number
of differentiations required to make the time series station-
ary, and q is the order of the MA component. The ARIMA
modeling process involves selecting the appropriate values
of p, d, and q for the time series.

2.3 CNN

Convolutional Neural Networks (CNN) are a class of
neural networks that use convolutions to process input
data, primarily in computer vision applications. CNNs are
composed of convolutional filter layers followed by pooling
layers to reduce dimensionality, and finally output layers
(LeCun et al., 2015).

The main difference between CNNs for computer vision
and CNNs for time series is that CNNs for time series
use one-dimensional convolutional filters instead of two-
dimensional convolutional filters (Barino and dos Santos,
2020). In the convolutional layer, a set of convolutional
filters is applied to the input time series. Each convolu-
tional filter generates a new time series that represents
the convolution of the input series with the filter. These
new time series are then processed by an activation layer,
such as the ReLU (Rectified Linear Unit), to introduce
nonlinearity into the network (Goodfellow et al., 2016).

After the convolutional layer processes the input time se-
ries, the pooling layer is used to reduce the dimensionality
of the data. The pooling layer operates on sliding windows
of the time series and applies an aggregation function, such
as average or maximum, to reduce the dimensionality of
the data (Barino and dos Santos, 2020).

2.4 LSTM

The LSTM is a recurrent neural network consisting of
several layers of memory cells, each with three gates: input
gate, forget gate and the output gate. The input gate de-
termines which information from the current input should
be stored in the memory cell. The forget gate decides
which information should be discarded from the memory
cell. The output gate determines which information from
the memory cell should be used in the current output
(Van Houdt et al., 2020).

To train the LSTM model, the error backpropagation
technique is used. For time series prediction, LSTM uses
a sliding window, where for each prediction the window
is shifted one position forward, and the next observation
is added to the window. This process is repeated until all
observations in the time series are predicted.



2.5 MLP Multi-head attention

The architecture of MLP-MHA consists of two main com-
ponents: a Multi-Head Attention (MHA) layer and an
Multi-Layer Perceptron (MLP) layer. The Multi-Head At-
tention layer allows the model to attend to different parts
of the input sequence simultaneously and capture complex
relationships between the input and output. The MLP
layer processes the output of the Multi-Head Attention
layer and learns to predict the target variable Vaswani
et al. (2017).

At its core, Multi-Head Attention addresses the impera-
tive of targeted allocation of focus to specific segments
within input sequences during computational processing.
This attribute gains paramount importance in time se-
ries forecasting, where prolonged sequences and intricate
temporal dependencies demand nuanced analytical dis-
section. Diverging from the conventional single-attention
counterparts, the Multi-Head Attention paradigm employs
a collective of attention heads, each dedicated to discerning
distinct temporal relationships encapsulated within the
data stream.

Multi-Head Attention orchestrates through phases. It
starts with linear transformations, assigning distinct query,
key, and value attributes for each attention head. The
scaled dot-product attention operates in isolation across
these parts, computing weighted summations based on
query-key correlations. This generates an attention score
matrix that encodes temporal relationships. Subsequent
stages involve concatenation, linear projection to harmo-
nize attention outputs. The synthesized result enters later
neural network layers, amalgamating diverse representa-
tions from various attention heads. Multi-Head Attention
enhances time series prediction by adeptly harmonizing
temporal perspectives for improved efficacy.

The attention computation follows, where attention scores
are calculated between the queries and keys. The atten-
tion scores measure the relevance or importance of each
historical observation for predicting the future values. The
attention scores are computed using a dot-product simi-
larity measure, scaled by the square root of the dimension
of the key vectors.

2.6 MLPRegressor

MLPRegressor is an MLP (Multilayer Perceptron) type ar-
tificial neural network model used for regression problems,
where the goal is to predict a continuous value based on
a set of inputs Mehmood et al. (2019). This algorithm
uses the error backpropagation technique to adjust its
parameters, which involves calculating the error between
the output predicted by the model and the actual value of
the time series. This error is then propagated back through
the neural network to adjust the synaptic weights. The
back-propagation process is repeated several times until
the error is minimized.

3. RECOVERY BOILER INCINERATOR

In the pulp and paper industry, Methanol (CH3OH),
Dissolved Non-Condensable Gases (DNCG), Concentrated
Non-Condensable Gases (CNCG) and Liquefied Petroleum

Gas (LPG) in a Non-Condensable Gas (NCG) incinerator
in the pulp and paper industry is a common practice to
treat the gases generated in the production process, as
illustrated in Figure 1.

DNCG and CNCG gases are generated during the boiling
of wood in pulp and paper production, while methanol is
obtained from the recovery of these gases by distillation
and condensation. LPG is obtained externally. The burn-
ing of these gases can result in the emission of various air
pollutants, such as nitrogen oxides (NOx), sulfur dioxide
(SO2), carbon monoxide (CO), carbon dioxide (CO2), and
reduced sulfur compounds (TRS), among others Wang
et al. (2019).

Several factors can influence TRS emissions from CNCG
incineration. One important factor is the incineration tem-
perature, as studies have shown that increasing the tem-
perature can reduce TRS emissions. For instance, Yu et al.
(2015) found that increasing the CNCG incineration tem-
perature from 800°C to 900°C resulted in a 50% reduction
in TRS emissions. The sulfur content of the CNCGs being
burned is another important factor that can influence TRS
emissions, with higher sulfur content leading to higher
emissions. Therefore, predicting to controller the sulfur
content of the gases being fed into the incinerator is es-
sential to minimize TRS emissions.

In this paper, 6 algorithms for time series prediction
(XGBRegressor, ARIMA, LSTM, CNN, MLP-MHA and
MLPRegressor) are analyzed to predict TRS emission time
series in pulp and paper industry. For this, the following
steps are considered: data collection, data preprocessing,
correlation analysis, model training and evaluation.

4. METHOD

This section provides a detailed account of the experimen-
tal procedures. It is organized into three parts. The first
part offers an in-depth overview of the dataset, including
its preprocessing and the evaluation metrics used in the
study. The second part outlines the models’ architecture
and the experimental parameter settings adopted for the
comparative analysis. The third part presents the exper-
iment’s outcomes through visual representations of the
prediction results obtained from the proposed models and
the comparison results.

4.1 Data collection

For the present case study, one year of data from a Brazil-
ian pulp and paper industry was considered. The TRS
values were collected every hour through instrumentation
located in the tower, as shown in Figure 1.

4.2 Data segregation

During this phase, preprocessed and validated data is
partitioned into distinct training and test sets. A fraction
of the training data is allocated for model validation.
In this study, data was randomly divided, with 30%
for testing and 70% for training. Within the 70%, 20%
served as validation and 80% for training the model.
It’s essential to maintain consistent class proportions in
resulting subsets.



Figure 1. Flue gas scrubbing system focusing on TRS emissions for this study (adapted from Valmet (2019)).

4.3 Model Evaluation Indicators

We used Mean Square Error (MSE) as the evaluation
indicators of the model. At the same time, Mean Absolute
Error (MAE), MSE and R2-Score were also used as eval-
uation indicators for comparison experiments with other
models.

4.4 Correlation Analysis

Autocorrelation is a statistical measure that indicates the
degree of correlation between a time series and its lagged
copies, where values close to 1 or -1 indicate strong positive
or negative correlation, respectively. In this study was
consider 25 lags.

Figure 2a) shows the last 4 past values have total auto-
correlation greater than 0.8. While the partial correlation,
the last 3 values have values smaller than 0.3, except the
TRS[n− 1] value (see Figure 2b).

The total autocorrelation can help identify repetitive pat-
terns in the series, while partial autocorrelation can help
identify the relationship between the current series and
the lagged copies, controlling for the effect of other lagged
copies.

In view of these results, 3 delays were adopted as input to
the time series forecasting algorithms for different predic-
tion horizons. This choice is justified due to the statistical
significance that these lags have, that is, if the value of the
partial or total correlation is less than a threshold value
(filled area of the graph), the null hypothesis is rejected
and the result is considered statistically significant. This
means that the probability of getting the observed result
due to chance is very low, and therefore there is likely to
be a real difference between the samples.

4.5 Model Architecture Configuration

In this case study the architecture in Figure 3 will be
considered, where the inputs to the forecasting algorithm
are the past values of the Total Reduced Sulphur (TRS)
gas, where d is the maximum delay number and h is the
prediction horizon.

(a) Total autocorrelation.

(b) Partial autocorrelation.

Figure 2. Autocorrelation.

Figure 3. Architecture.

In addition, to form the forecasting block in the figure
above, the algorithms listed in Table 1, whose parameters
were empirically defined, are adopted. In addition, it was
adopted that the dimensionality of the algorithms’ input
depends on the number of lags adopted and the output
of the prediction horizon. For the LSTM, CNN and Self-
Attention algorithms, 100 epochs, Adam optimizer, mean



square error as loss function and learning rate equal to
0.001 were adopted.

Table 1. ML algorithms and parameters.

Algorithm Parameters

XGBRegressor

Estimators=1000

Max depth=7

Learning rate=0.001

Random state=0

ARIAMA p=1, d=0, q=0

LSTM

LSTM(neuron = 64, act=relu,return seq=True)

LSTM(neuron=64, act=relu,return seq=True)

LSTM(neuron=64, act=relu)

Dense(horizon)

CNN

Conv1D(filters=64, kernel size=3, act=relu)

MaxPooling1D(pool=1, strides=2, padding=valid)

Flatten

Dense(horizon)

MLP-MHA

MultiHeadAttention(num heads=5, key dim=1)

Flatten

Dense(neuron = 30, act=relu)

Dense(Horizon)

MLPRegressor

Hidden layer sizes=(50, 50)

Act=relu

Solver=adam

Max iter=5000

5. RESULTS AND DISCUSSIONS

In this section, the results of the work will be exposed
in detail. This way, the time series prediction algorithms
proposed in the previous section will be taken into account
for the prediction of TRS emissions in an industry of pulp
and paper. The algorithm performances were evaluated in
the test stage, considering MAE, MSE, R2 and forecast
execution time as evaluation metrics.

5.1 TRS forecasting for horizon equal 1

Figure 4 shows the result for test values for different time
series forecasting methods, where 3 lags were considered
to predict the next future value of TRS emission.

Figure 4. Performance for a lag of 3 with a horizon of 1.

Analyzing the results displayed in Table 2, it can be seen
that CNN and LSTM showed the lowest value of MAE
and MSE, with 0.046 and 0.006 for CNN and 0.047 and
0.006 for LSTM, respectively. These values indicate that
these models were able to predict the time series with the
least number of error, which is an important advantage in
practical applications.

Table 2. Evaluating metrics for a lag of 3 with
a horizon of 1.

MAE MSE R2-Score Time (s)

XGBRegressor 0.0541 0.0091 0.7513 0.0687

ARIAMA 0.0565 0.0109 0.7046 0.0536

LSTM 0.0474 0.0067 0.8174 0.3766

CNN 0.0464 0.0066 0.8205 0.1639

MLP-MHA 0.0529 0.0075 0.7959 0.2078

MLPRegressor 0.0478 0.0069 0.8103 0.0059

In terms of R2-Score, LSTM achieved the highest value
(0.81), closely followed by CNN with a score of 0.82. This
indicates that both models effectively capture a significant
portion of the variability present in the time series data,
presenting a substantial advantage.

Despite their competitive performance, CNN demon-
strated a shorter execution time compared to LSTM. This
aspect positions CNN as a preferable option when swift
computation is imperative.

While XGBRegressor and MLPRegressor showcased marginally
higher values for MAE, MSE, and R2-Score when com-
pared to CNN and LSTM, their noteworthy efficiency
advantage over neural network models makes them notable
choices. ARIAMA and MLP-MHA exhibited intermediate
performance across the evaluation metrics.

To synthesize, Table 2 underscores CNN and LSTM as
robust contenders for time series prediction, offering com-
mendable accuracy and elevated R2-Scores.

5.2 TRS forecasting for horizon equal 8

In order to evaluate the range of the prediction horizon for
the lag value equal to 3, a horizon equal to 8 was adopted.
The graph of this test is illustrated in Figure 5 and the
evaluation metrics are shown in Table 3.

Figure 5. Performance for a lag of 3 with a horizon of 8.

Observing the results obtained, we can see that the CNN,
MLP-MHA, LSTM and MLPRegressor algorithms had a
similar performance regarding MAE, with values around
0.08. The XGBRegressor and ARIAMA had higher MAE
values, with 0.09 and 0.07, respectively. However, it is
important to note that the reference value for MAE can
vary depending on the context of the problem, so it is
important to evaluate other metrics as well.

In terms of MSE, the algorithms exhibited consistent
results, all below 0.02. Among them, CNN achieved the



Table 3. Evaluating metrics for a lag of 3 with
a horizon of 8.

MAE MSE R2-Score Time (s)

XGBRegressor 0.0942 0.0203 0.4495 0.3887

ARIAMA 0.0785 0.0179 0.5145 0.0545

LSTM 0.0853 0.0175 0.5241 0.3835

CNN 0.0827 0.0159 0.5688 0.2198

MLP-MHA 0.0836 0.0158 0.5713 0.2526

MLPRegressor 0.0789 0.0153 0.5830 0.0020

lowest value, while ARIAMA and XGBRegressor had
relatively higher MSE scores.

The R2-Score quantifies the explained variance between
dependent and independent variables. Here, CNN, MLP-
MHA, and MLPRegressor performed comparably, each
attaining a score of approximately 0.57, closely followed
by MLPRegressor with 0.58. Conversely, ARIAMA and
XGBRegressor demonstrated lower performance concern-
ing this metric.

In execution time, MLPRegressor was swift at 0.002 sec-
onds, whereas LSTM was the slowest at 0.38 seconds. The
remaining algorithms exhibited similar execution times.

Regarding performance metrics (MAE, MSE, R2-Score),
CNN, MLP-MHA, LSTM, and MLPRegressor showed sim-
ilar outcomes. However, ARIAMA and XGBRegressor fell
short. Considering execution time is crucial; MLPRegres-
sor’s efficiency is an asset, but LSTM’s prolonged duration
is a drawback

6. CONCLUSION

Upon analyzing the outcomes, it can be observed that the
LSTM and CNN models yielded the best results for the
horizon of 1, with an MAE of 0.047 and 0.046, respectively.
These models outperformed the XGBRegressor, which had
the third-best performance, with an MAE of 0.054. On the
other hand, for the horizon equal to 8, the MLPRegressor
model had the best performance, with an MAE of 0.078,
followed by ARIAMA, with an MAE of 0.078. The XG-
BRegressor had the worst performance, with an MAE of
0.094.

The use of these models for Total Reduced Sulfur predic-
tion in the paper and pulp industry can bring significant
benefits in terms of reducing environmental pollution and
improving the health of the population. Total Reduced
Sulfur is a highly toxic gas that can cause severe respi-
ratory problems and has a pungent odor that can cause
nuisance to the surrounding population. Therefore, pre-
dicting its concentration accurately can help industries
take appropriate measures to control their emissions and
reduce their impact on the environment and public health.

In addition to the environmental and health benefits, the
use of these models can also bring significant economic
advantages to the industry.
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